JSON to CSV Converter: Complete Guide
JSON to CSV Converter Guide
Converting JSON to CSV is essential for data analysis, Excel imports, and reporting. Learn how to do it effectively.
Why Convert JSON to CSV?
1. Excel Compatibility
CSV files open directly in:
- Microsoft Excel
- Google Sheets
- LibreOffice Calc
- Apple Numbers
2. Data Analysis
Easier to analyze with:
- SQL databases
- Data science tools
- Statistical software
- Business intelligence tools
3. Human Readable
Simpler format for non-technical users
4. Universal Support
Works with virtually any data tool
How It Works
Simple JSON Array
Input:
[
{"name": "John", "age": 30, "city": "NYC"},
{"name": "Jane", "age": 25, "city": "LA"},
{"name": "Bob", "age": 35, "city": "Chicago"}
]
Output CSV:
name,age,city
John,30,NYC
Jane,25,LA
Bob,35,Chicago
Nested Objects
Input:
[
{
"name": "John",
"address": {
"city": "NYC",
"zip": "10001"
}
}
]
Output CSV (flattened):
name,address.city,address.zip
John,NYC,10001
Using Our Converter
- Paste JSON into the input
- Configure options:
- Delimiter (comma, semicolon, tab)
- Include headers
- Handle nested objects
- Convert and download
Try it: JSON to CSV Converter
Conversion Methods
JavaScript
function jsonToCsv(json) {
const items = Array.isArray(json) ? json : [json];
const headers = Object.keys(items[0]);
const csv = [
headers.join(','),
...items.map(item =>
headers.map(header =>
JSON.stringify(item[header] || '')
).join(',')
)
].join('\n');
return csv;
}
// Usage
const data = [
{name: "John", age: 30},
{name: "Jane", age: 25}
];
console.log(jsonToCsv(data));
Python
import json
import csv
def json_to_csv(json_data, csv_file):
with open(csv_file, 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=json_data[0].keys())
writer.writeheader()
writer.writerows(json_data)
# Usage
data = [
{"name": "John", "age": 30},
{"name": "Jane", "age": 25}
]
json_to_csv(data, 'output.csv')
Command Line (jq)
jq -r '(.[0] | keys_unsorted) as $keys | $keys, map([.[$keys[]]])[] | @csv' data.json > output.csv
Handling Complex Data
Arrays in Cells
[
{
"name": "John",
"skills": ["JS", "Python", "Go"]
}
]
Output:
name,skills
John,"JS; Python; Go"
Missing Fields
[
{"name": "John", "age": 30, "email": "john@ex.com"},
{"name": "Jane", "age": 25}
]
Output (empty cells for missing data):
name,age,email
John,30,john@ex.com
Jane,25,
Special Characters
Escaped automatically:
name,description
Product A,"Contains ""quotes"" and, commas"
Best Practices
1. Consistent Structure
Ensure all objects have same fields:
// Good - consistent fields
[
{"name": "John", "age": 30},
{"name": "Jane", "age": 25}
]
// Bad - inconsistent fields
[
{"name": "John", "age": 30},
{"firstName": "Jane", "years": 25}
]
2. Flatten Nested Data
Convert nested objects to flat structure before conversion
3. Handle Arrays
Convert arrays to strings or separate columns
4. Choose Right Delimiter
- Comma (,) - Most common
- Semicolon (;) - European standard
- Tab (\t) - For TSV files
Common Use Cases
1. Data Export
Export API data to spreadsheet
2. Reporting
Generate CSV reports from JSON logs
3. Data Migration
Transfer data between systems
4. Analytics
Prepare data for analysis tools
Limitations
1. Flat Structure Required
CSV doesn't support nested structures natively
2. Data Type Loss
Everything becomes text in CSV
3. Large Files
CSV files can be large for big datasets
4. No Metadata
Unlike JSON, CSV has no metadata support
Advanced Tips
Custom Delimiter
// Use tab delimiter
const csv = headers.join('\t');
Quote All Fields
const csv = headers.map(h => `"${h}"`).join(',');
Add BOM for Excel
const csv = '\ufeff' + csvContent; // UTF-8 BOM
Reverse Conversion
Need to go back? Use our CSV to JSON tool!
Conclusion
Converting JSON to CSV makes data accessible for Excel and analysis tools. Use our JSON to CSV Converter for quick, accurate conversions!